Upaya Peningkatan Keterampilan Berpikir Komputasional Matematis Melalui Model Pembelajaran Problem Based Learning
Abstract
Keterampilan berpikir komputasional merupakan keterampilan yang dibutuhkan pada era 5.0 . Sehingga, pada kurikulum merdeka menteri pendidikan indonesia menambahkan keterampilan berpikir komputasional dalam proses pembelajaran. Walaupun keterampilan berpikir komputasional menjadi keterampilan yang dibutuhkan pada masa kini, banyak peserta didik yang belum mampu berpikir komputasional. Hal tersebut, ditunjukkan pada saat pembelajaran khusunya pada pembelajaran matematika kebanyakan peserta didik yang menggunakan rumus tanpa mengetahui konsepnya. Ketika suatu permasalahan diubah banyak peserta didik tidak dapat memecahkan permasalahan tersebut. Oleh sebab itu, guru mengupayakan keterampilan berpikir komputasional matematis melalui pembelajaran PBL (problem based learning). Tujuan penelitian ini untuk meningkatkan keterampilan berpikir komputasional melalui model PBL. PTK (Penelitian Tindakan Kelas) merupakan jenis penelitian yang digunakan pada penelitian ini. Peserta didik SMP Negeri 14 Surabaya kelas VII B pada tahun ajaran 2022 – 2023 merupakan subjek dari penelitian ini dengan materi bangun ruang sisi datar. Teknik pengumpulan data pada penelitian ini adalah dengan tes keterampilan berpikir komputasional matematis. Instrumen dalam penelitian ini adalah asesmen diagnostik, modul ajar, tes formatif dan lembar kerja peserta didik. Hasil dari data yang diperoleh adalah keterampilan peserta didik dalam memecahkan masalah matematika semakin meningkat. Hal tersebut, dikarenakan keterampilan peserta didik dalam berpikir komputasional matematis mengalami peningkatan melalui upaya pembelajaran dengan model PBL. Peningkatan keterampilan berpikir komputasional matematis, terlihat dari ketuntasan klasikal yang meningkat dari prasiklus hingga siklus III berturut – turut adalah 0% , 50 %, 70 % dan 77 %. Sehingga dari peningkatan ketuntasan klasikal tersebut peneliti mengambil kesimpulan, dengan model PBL dapat meningkatkan keterampilan berpikir komputasional matematis.
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.