Upaya Peningkatan Keterampilan Berpikir Komputasional Matematis Melalui Model Pembelajaran Problem Based Learning
DOI:
https://doi.org/10.30587/didaktika.v29i2.6504Keywords:
Era Society 5.0; Keterampilan Berpikir Komputasional Matematis; Problem Based LearningAbstract
Keterampilan berpikir komputasional merupakan keterampilan yang dibutuhkan pada era 5.0 . Sehingga, pada kurikulum merdeka menteri pendidikan indonesia menambahkan keterampilan berpikir komputasional dalam proses pembelajaran. Walaupun keterampilan berpikir komputasional menjadi keterampilan yang dibutuhkan pada masa kini, banyak peserta didik yang belum mampu berpikir komputasional. Hal tersebut, ditunjukkan pada saat pembelajaran khusunya pada pembelajaran matematika kebanyakan peserta didik yang menggunakan rumus tanpa mengetahui konsepnya. Ketika suatu permasalahan diubah banyak peserta didik tidak dapat memecahkan permasalahan tersebut. Oleh sebab itu, guru mengupayakan keterampilan berpikir komputasional matematis melalui pembelajaran PBL (problem based learning). Tujuan penelitian ini untuk meningkatkan keterampilan berpikir komputasional melalui model PBL. PTK (Penelitian Tindakan Kelas) merupakan jenis penelitian yang digunakan pada penelitian ini. Peserta didik SMP Negeri 14 Surabaya kelas VII B pada tahun ajaran 2022 – 2023 merupakan subjek dari penelitian ini dengan materi bangun ruang sisi datar. Teknik pengumpulan data pada penelitian ini adalah dengan tes keterampilan berpikir komputasional matematis. Instrumen dalam penelitian ini adalah asesmen diagnostik, modul ajar, tes formatif dan lembar kerja peserta didik. Hasil dari data yang diperoleh adalah keterampilan peserta didik dalam memecahkan masalah matematika semakin meningkat. Hal tersebut, dikarenakan keterampilan peserta didik dalam berpikir komputasional matematis mengalami peningkatan melalui upaya pembelajaran dengan model PBL. Peningkatan keterampilan berpikir komputasional matematis, terlihat dari ketuntasan klasikal yang meningkat dari prasiklus hingga siklus III berturut – turut adalah 0% , 50 %, 70 % dan 77 %. Sehingga dari peningkatan ketuntasan klasikal tersebut peneliti mengambil kesimpulan, dengan model PBL dapat meningkatkan keterampilan berpikir komputasional matematis.
References
Problem Based Learning on Vibration and Wave. AIP Conference Proceedings, 2569(1), 60011.
https://doi.org/10.1063/5.0131246/2869830
Harti, Y. P., Sari, L., Agustin, A., & Budijanto, B. (2022). Mengenal Computasional Thingking (Salah
Satu Kompetensi Baru Dalam Kurikulum Merdeka 2022). Paradigma: Jurnal Filsafat, Sains,
Teknologi, Dan Sosial Budaya, 28(4), 7–14. https://doi.org/10.33503/PARADIGMA.V28I4.2604
Jaya, I. (2019). Penerapan Statistik Untuk Penelitian Pendidikan. Kencana.
Khasanah, U., Siswandari, S., & Murwaningsih, T. (2023). Implementation of Problem-Based Learning
to Improve Student Learning Outcomes for Economics Subject. International Journal of
Multicultural and Multireligious Understanding, 10(1), 266–273.
https://doi.org/10.18415/IJMMU.V10I1.4326
Kong, S.-C., & Abelson, H. (2019). Computational Thinking Education (1st ed.). Springer Singapore.
https://doi.org/10.1007/978-981-13-6528-7
Kusumawati, E. R., & Achmad, S. (2022). Pelatihan computational thinking guru MI se-Kecamatan
Pabelan, Kabupaten Semarang. Penamas: Journal of Community Service, 2(1), 18–28.
https://doi.org/10.53088/PENAMAS.V2I1.283
Lee, J., Joswick, C., & Pole, K. (2023). Classroom Play and Activities to Support Computational Thinking
Development in Early Childhood. Early Childhood Education Journal, 51(3), 457–468.
https://doi.org/10.1007/S10643-022-01319-0/METRICS
Marom, S. (2023). KEEFEKTIFAN PENGGUNAAN WOLFRAMS MATHEMATICA DALAM INJEKSI
CARA BERPIKIR KOMPUTASIONAL PADA PROSES PEMODELAN MATEMATIKA. Teorema:
Teori Dan Riset Matematika, 8(1), 81–87. https://doi.org/10.25157/teorema.v8i1.7933
Mashuri, S. (2019). Media Pembelajaran Matematika . Deepublish.
https://books.google.co.id/books?hl=id&lr=&id=jHGNDwAAQBAJ&oi=fnd&pg=PR5&dq=manfa
at+media+pembelajaran+matematika&ots=RttFYchXWe&sig=utZ1o_GORXB39S3qYeU4mfmMe
BU&redir_esc=y#v=onepage&q=manfaat%20media%20pembelajaran%20matematika&f=false
Ni Putu Dyah, N., I Gusti Agung Ayu, W., & Sujana, I. W. (2020). Enhancement of Mathematics Critical
Thinking Skills through Problem Based Learning Assisted with Concrete Media. Journal of
Education Technology, 4(3), 254–263. https://doi.org/10.23887/JET.V4I3.25552
Nurasiah, Paristiowati, M., Erdawati, & Afrizal. (2023). Integration Of Technology In Problem-Based
Learning To Improve Students Computational Thinking: Implementation On Polymer Topics.
International Journal of Social and Management Studies, 4(2), 65–73.
https://doi.org/10.5555/IJOSMAS.V4I2.280
Parnawi, A. (2020). Penelitian Tindakan Kelas (Classroom Action Research). In deepublish (1st ed.).
Deepublish. https://books.google.co.id/books?id=djX4DwAAQBAJ
Pebriyanti, D. (2023). Pengaruh Implementasi Pembelajaran Berdiferensiasi pada Pemenuhan
Kebutuhan Belajar Peserta Didik Tingkat Sekolah Dasar. JURNAL KRIDATAMA SAINS DAN
TEKNOLOGI, 5(01), 89–96. https://doi.org/10.53863/KST.V5I01.692
Podcast, P., Mengembangkan, U., Berpikir, K., Siswa, K., Pandemi, G., Tyara Augie, K., & Priatna, N.
(2021). Penggunaan Podcast Untuk Mengembangkan Keterampilan Berpikir Komputasi Siswa
selama Gangguan Pandemi. Didactical Mathematics, 3(1), 41–47.
https://doi.org/10.31949/DM.V3I1.1042
Pratiwi, G. L., & Akbar, B. (2022). PENGARUH MODEL PROBLEM BASED LEARNING TERHADAP
KETERAMPILAN COMPUTATIONAL THINKING MATEMATIS SISWA KELAS IV SDN
KEBON BAWANG 03 JAKARTA. Didaktik : Jurnal Ilmiah PGSD STKIP Subang, 8(1), 375–385.
https://doi.org/10.36989/DIDAKTIK.V8I1.302
Puspita, Y., Fitriani, Y., Astuti, S., & Novianti, S. (2020). SELAMAT TINGGAL REVOLUSI INDUSTRI
4.0, SELAMAT DATANG REVOLUSI INDUSTRI 5.0. 122–130. https://jurnal.univpgripalembang.ac.id/index.php/Prosidingpps/article/view/3794/3565
Sani, R. A. (2016). Penilaian Autentik (R. D. Aningtyas, Ed.). PT. Bumi Aksara.
Satrio, W. A. (2020). Pengaruh Model Pembelajaran KADIR (Koneksi, Aplikasi, Diskursus, Improvisasi, dan
Refleksi) Terhadap Keterampilan berpikir Komputasional Matematis Siswa. UIN Syarif Hidayatullah.
Schleicher, A. (2019). PISA 2018: Insights and Interpretations. OECD Publishing.
Sumiadi, R., & Jamil, N. (2023). Penerapan Media Pohon Ilmu Untuk Meningkatkan Kemampuan
Berhitung Siswa Kelas III SDN Sesaiat. Jurnal Ilmiah Mandala Education, 9(1), 2442–9511.
https://doi.org/10.58258/JIME.V9I1.4750
Voon, X. P., Wong, S. L., Wong, L. H., Khambari, M. N. M., & Syed-Abdullah, S. I. S. (2022). Developing
Computational Thinking Competencies through Constructivist Argumentation Learning: A
Problem-Solving Perspective. International Journal of Information and Education Technology, 12(6),
529–539. https://doi.org/10.18178/IJIET.2022.12.6.1650
Wahyuni, D., Kunci, K., Bahasa, L., Numerasi, L., & Kompetensi Minimum, A. (2023). The Effect of
Language Literacy and Numerical Literacy on the Result of the Minimum Competency
Assessment (AKM) of SMAN Ploso Jombang. Edunesia: Jurnal Ilmiah Pendidikan, 4(1), 225–237.
https://doi.org/10.51276/EDU.V4I1.315
Warso, A. W. D. D. (2021). Mengenal Penelitian Tindakan Kelas Dan Dilengkapi Contohnya (1st ed.).
Deepublish.
https://www.google.co.id/books/edition/Mengenal_Penelitian_Tindakan_Kelas_Dan_D/ULkvE
AAAQBAJ?hl=id&gbpv=1&dq=penelitian+tindakan+kelas+adalah&printsec=frontcover
Widodo, S., Cilviani, C., Rahayu, P., & Ramarumo, T. (2023). Elementary school students computational
thinking skills in learning-based 3D-Geometry problem. Indomath: Indonesian Mathematics
Education, 6(1), 1–10. https://indomath.org/index.php/
Wijanto, M. C., Tan, R., Sujadi, F. S., Panca, B. S., Toba, H., Yulianti, D. T., Budi, S., Santoso, S., Widjaja,
A., Nathasya, R. A., Kurniawati, G., & Karnalim, O. (2021). Implementasi Computational
Thinking Melalui Pemrograman Visual dengan Kolaborasi Mata Pelajaran pada Siswa Menengah
Atas. Sendimas.Ukdw.Ac.Id, 50–55. https://sendimas.ukdw.ac.id/index.php/2021/article/view/15
Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023). Integration of computational thinking in K-12
mathematics education: a systematic review on CT-based mathematics instruction and student
learning. International Journal of STEM Education, 10(1), 1–26. https://doi.org/10.1186/S40594-02300396-W/FIGURES/10
Downloads
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.