PENINGKATAN PENGUASAAN KONSEP MATRIKS MELALUI MODEL PEMBELAJARAN KOOPERATIF TIPE TWO STAY TWO STRAY (TSTS)
(Lesson Study dengan Mengambil Obyek Mata Kuliah Matriks di Semester 2)
Abstract
Artikel ini ditulis dengan tujuan untuk mendeskripsikan hasil pembelajaran yang memfokuskan pada peningkatan penguasaan konsep mahasiswa terhadap materi matriks. Sebagai
calon pendidik, mahasiswa Program Studi Pendidikan Matematika dibekali dengan kompetensi professional yang berkaitan dengan penguasaan materi secara mendalam. Kompetensi profesional ini diberikan melalui mata kuliah aljabar yang salah satunya adalah mata kuliah Matriks. Berdasarkan permasalahan tersebut maka tim lesson study (LS) mencoba menerapkan pembelajaran dengan model pembelajaran kooperatif tipe two stay two stray. Kegiatan LS dilaksanakan sebanyak 4 siklus dan setiap siklusnya terdapat 3 tahap yaitu, plan, do dan see. Hasil observasi dari siklus 1 sampai 4 menunjukkan penguasaan mahasiswa terhadap konsep meningkat, pada siklus ke-3 dan ke-4 mahasiswa mampu mempresentasikan hasil diskusi mereka tanpa membawa catatan serta dapat menyimpulkan sendiri materi yang mereka pelajari tanpa arahan dari dosen dan tanpa melihat buku.
Dan berdasarkan nilai kuis mahasiswa pada siklus ke-2, ke-3, dan ke-4, menunjukkan adanya peningkatan penguasaan konsep mahasiswa. Pada siklus ke-2 nilai rata-rata mahasiswa 71,25; pada siklus ke-3 nilai rata-rata mahasiswa 87,28; pada siklus ke-4 nilai rata-rata mahasiswa 87,625. Dengan demikian dapat disimpulkan bahwa model pembelajaran kooperatif tipe two stay two stray dapat meningkatkan penguasaan konsep mahasiswa terhadap materi yang mereka pelajari.
Downloads
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.