Learning Trejectory pada Pembelajaran Berdiferensiasi Materi Keliling Bangun Datar Berdasarkan Perbedaan Gaya Belajar
Abstract
Penelitian ini bertujuan untuk mengungkap learning trajectory pada pembelajaran berbasis berdiferensiasi yang didasarkan pada perbedaan gaya belajar. Penelitian ini dilaksanakan di SD Muhammadiyah 1 GKB dengan melibatkan 29 subjek kelas III. Desain Penelitian ini menggunakan design research Gravemeijer dan Cobb yang melalui 3 tahapan: (1) preparing for the experiment dimulai dengan menyusun rencana pembalajaran, instrumen yang sesuai dengan gaya belajar peserta didik; (2) design experiment berkaitan dengan teaching experiment dan collecting data. Pada gaya belajar visual peserta didik sudah mampu mengaitkan pemahamannya dengan apa yang ia lihat mengenai materi keliling bangun datar. Sedangkan pada gaya belajar auditorial, peserta didik sudah mampu memahami mengenai vidio yang disampaikan dan menjawab soal-soal yang telah didengar. Hanya saja pada soal yang berhubungan dengan kehidupan sehari-hari peserta didik masih salah dalam melakukan perhitungan dan salah dalam memahami konsepnya. Sedangakan gaya belajar kinestetik peserta didik sangat antusias dalam membuat mobil mainan dan menmberi sedikit warna pada kaca mobil; dan (3) retrospective analysis, dari pendahuluan hingga penetup pemberian stimulasi khusus sudah sesuai dengan gaya belajar peserta didik. Peserta didik juga mampu mengontruksi pengetahuannya dengan baik mengenai keliling bangun datar baik persegi, persegi panjang dan segi banyak.
Kata Kunci : Pembelajaran berdiferensiasi, gaya belajar, learning trajectory, bangun datar.
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.