Identifikasi Kemandirian Belajar Siswa di Ma Nurul Islam Lumajang Pada Materi Fluida Dinamis Melalui Pengamatan Video Berbasis TBLA
Abstract
Pengamatan pembelajaran dilakukan guna mengevaluasi proses pembelajaran yang telah terlaksana. Apakah sudah berjalan dengan baik atau perlu adanya perbaikan. Pengamatan pembelajaran bisa dilakukan tanpa melakukan proses pembelajaran secara langsung melainkan melalui pengamatan video. Penelitian ini bertujuan untuk mengidentifikasi kemandirian belajar siswa dengan menganalisis isi video rekaman pembelajaran menggunakan TBLA dalam pembelajaran fisika. Jenis penelitian yang digunakan adalah studi kasus: observasi video dengan pendekatan penelitian metode campuran. Jenis observasi yang digunakan adalah observasi non partisipan. Dengan jumlah observer enam orang termasuk peneliti. Berdasarkan hasil analisis yang ditunjukkan melalui dialog interaksi pada grafik satuan kata, pertemuan pertama diperoleh angka tingkat kemandirian dengan persentase masing-masing indikator sebesar 7%, 16,9%,5,9%,13,5% dan 16%. Pertemuan kedua dengan persentase 11%,23%,20%,20% dan 25%. Terlihat dari perolehan persentase pada dua kali pertemuan pembelajaran, dapat disimpulkan tingkat kemandirian siswa dalam belajar di kelas XI MA Nurul Islam Bades Pasirian Lumajang pada materi fluida dinamis masih tergolong rendah. Maka saran yang terkandung dalam penelitian ini adalah guru dapat merefleksikan pembelajaran yang telah dilaksanakan dengan menganalisis hasil proses pembelajaran menggunakan teknik TBLA dan merancang pembelajaran yang lebih baik untuk memperbaiki kekurangan pada pembelajaran sebelumnya sehingga akan mewujudkan kemandirian belajar siswa lebih baik lagi.
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.