PENGARUH MODEL PEMBELAJARAN THINK ALOUD PAIR PROBLEM SOLVING (TAPPS) TERHADAP KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA TERHADAP KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA
Abstract
NCTM merumuskan lima standar kemampuan matematika yang harus dimiliki
peserta didik, salah satunya yaitu kemampuan pemecahan masalah matematika. Untuk
meningkatkan kemampuan pemecahan masalah matematika peserta didik diperlukan
inovasi dalam pembelajaran terutama mengenai model pembelajaran yang dapat
mengembangkan kemampuan pemecahan masalah matematika peserta didik. Salah satu
model pembelajaran yang diharapkan dapat digunakan untuk meningkatkan kemampuan
pemecahan masalah matematika peserta didik yaitu model pembelajaran Think Aloud
Pair Problem Sloving (TAPPS). Tujuan penelitian ini yaitu untuk mengetahui apakah
model pembelajaran Think Aloud Pair Problem Solving (TAPPS) berpengaruh terhadap
kemampuan pemecahan masalah matematika peserta didik.
Penelitian ini merupakan penelitian eksperimen murni (True Experimental)
dengan desain “Posttest Only Control Design”. Sampel penelitian ini adalah peserta didik
kelas VIII-D (kelas eksperimen) dan VIII-C (kelas kontrol). Metode pengumpulan data
yang digunakan adalah metode dokumentasi dan tes dengan instrumen penelitian lembar
tes kemampuan pemecahan masalah matematika.
Dari hasil penelitian yang dilakukan, maka diperoleh nilai rata-rata kemampuan
pemecahan masalah matematika peserta didik dengan model pembelajaran TAPPS
sebesar 58 dan nilai rata-rata kemampuan pemecahan masalah matematika peserta didik
dengan model pemebelajaran kooperatif sebesar 46. Hasil uji t dua sampel independen
(Independent-Sampel t Test) juga menunjukkan bahwa nilai sig = 0,042 < 0,05, artinya
H ditolak dan H diterima. Sehingga dapat disimpulkan bahwa model pembelajaran
Think Aloud Pair Problem Solving (TAPPS) berpengaruh terhadap kemampuan
pemecahan masalah matematika peserta didik.
Downloads
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.