KEMAMPUAN REPRESENTASI MATEMATIS PESERTA DIDIK MELALUI MODEL PEMBELAJARAN THINK TALK WRITE (TTW) PADA MATERI BANGUN DATAR SEGI EMPAT DI KELAS VII E MTs AL-IBROHIMI MANYAR GRESIK
Abstract
Kemampuan representasi matematis merupakan hal yang selalu muncul ketika
seseorang mempelajari matematika karena kemampuan representasi dapat membantu
peserta didik menjelaskan konsep atau ide dan memudahkan peserta didik untuk
mendapatkan strategi pemecahan dalam menjawab soal – soal matematika, namun
banyak peserta didik yang kurang memahami serta merepresentasi masalah yang
berkaitan segiempat, salah satu faktor penyebab rendahnya kemampuan representasi
matematis terletak pada penggunaan model pembelajaran yang belum tepat. Penelitian
ini untuk mendeskripsikan kemampuan representasi matematis peserta didik melalui
model pembelajaran Think Talk Write
(TTW
) pada materi bangun datar segi empat di
kelas VII E MTs Al – Ibrohimi Manyar Gresik.
Penelitian ini merupakan penelitian deskriptif kuantitatif. Subjek pada penelitian ini
adalah seluruh peserta didik kelas VII-E MTs Al-Ibrohimi sebanyak 41 peserta didik.
Metode yang digunakan adalah metode tes dan observasi. Instrumen yang digunakan
adalah tes kemampuan representasi matematis dan lembar observasi.
Dari hasil analisis data, kemampuan representasi matematis peserta didik kelas VII
E di MTs Al-Ibrohimi setelah melakukan pembelajaran dengan model TTW tergolong
baik dengan rata – rata prosentase sebesar 64,27%, berdasarkan observasi, persentase
rata-rata aktifitas peserta didik pada seluruh pertemuan yang berada pada kategori aktif
yaitu 54,1%, kategori cukup aktif yaitu 28,6%, dan kategori tidak aktif yaitu 17,3%.
Kemampuan guru dalam mengelola pembelajaran dengan model TTWpadamateri bangun
datar segi empat tergolong baik dengan rata – rata 80,5.
Downloads
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.