Profil Kemampuan Koneksi Matematis Siswa SMP Yang Bergaya Kognitif Reflektif- Impulsif Dalam Menyelesaikan Soal Geometri
Abstract
Setiap siswa terlahir dengan karakteristik unik yang melekat pada dirinya termasuk gaya kognitif. Siswa dalam satu kelas tentu memiliki bermacam-macam tipe gaya kognitif. Perbedaan tipe gaya kognitif tersebut dapat menyebabkan perbedaan dalam hal kemampuan matematika. Salah satu kemampuan dasar matematika yang harus dimiliki oleh seorang siswa adalah kemampuan koneksi matematika. Penelitian ini bertujuan mendeskripsikan profil kemampuan koneksi matematis siswa SMP Muhammadiyah 1 Gamping kelas VIII yang bergaya kognitif Reflektif-Impulsif dalam menyelesaikan soal Geometri. Penelitian ini menggunakan pendekatan kualitatif deskriptif. Subjek penelitian ini adalah 2 orang siswa kelas VIII SMP Muhammadiyah 1 gamping yang masing-masing bergaya kognitif refleksif dan impulsif. Adapun penentuan gaya kognitif siswa menggunakan Matching Familiar Figures Test (MFFT). Teknik pengumpulan datanya menggunakan tes kemampuan komunikasi matematika (TKKM) dan wawancara. Analisis data dalam penelitian ini menggunakan model Milles dan Huberman. Sedangkan untuk mendapatkan data penelitian yang konsisten digunakan triangulasi waktu. Hasil penelitian menunjukkan bahwa dalam mengerjakan masalah yang diberikan subjek Reflektif memiliki kemampuan koneksi matematis yang lebih baik dari pada subjek impulsif. Subjek refleksif mampu mengenali dan menggunakan hubungan antar ide-ide dalam matematika, memahami bagaimana ide dalam matematika saling berhubungan dan membangun satu sama lain untuk menghasilkan suatu kesatuan yang utuh, mengenali dan mengaplikasikan matematika ke dalam lingkungan di luar matematika. Sedangkan subjek Impulsif belum sepenuhnya mampu mengenali dan menggunakan hubungan antar ide-ide dalam matematika, belum menunjukkan bahwa ia memahami bagaimana ide dalam matematika saling berhubungan dan membangun satu sama lain untuk menghasilkan suatu kesatuan yang utuh. Lebih lanjut lagi, Subjek Impulsif belum sepenuhnya mampu mengenali dan mengaplikasikan matematika ke dalam lingkungan di luar matematika.
Downloads
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.