KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA PESERTA DIDIK MELALUI MODEL PEMBELAJARAN KOOPERATIF TEAM ASSISTED INDIVIDUALIZATION (TAI) DI KELAS VII-A SMPN 1 KEBOMAS
Abstract
Kemampuan pemecahan masalah matematika merupakan bagian penting dalam pembelajaran matematika. Untuk mengembangkan kemampuan pemecahan masalah matematika diperlukan sebuah model pembelajaran yang inovatif dan mampu meningkatkan kemampuan pemecahan masalah matematika. Model pembelajaran yang dapat digunakan untuk meningkatkan kemampuan pemecahan masalah matematika adalah model pembelajaran Team
Asissted Individualization. Model pembelajaran Team Asissted Individualization terdiri delapan tahap yaitu Placement test, Team, Teaching Group, Student Creative, Team Study, Fact Test, Team Score and Team Recognition, dan Whole- Class Units. Oleh karena itu, penelitian ini bertujuan untuk mendeskripsikan kemampuan pemecahan masalah peserta didik dalam menyelesaikan masalah matematika melalui model pembelajaran Team Asissted Individualization.
Penelitian ini merupakan penelitian deskriptif kuantitatif. Penelitian ini dilaksanakan di SMP Negeri 1 Kebomas pada kelas VII-A sebanyak 32 peserta didik pada semester ganjil tahun akademik 2017/2018. Metode pengumpulan data adalah metode tes. Metode tes digunakan untuk mendapatkan data kemampuan pemecahan masalah peserta didik. Instrumen penelitian yang digunakan adalah soal tes kemampuan pemecahan masalah matematika berbentuk uraian
yang sebelumnya diuji validitas oleh para ahli. Hasil dari penelitian ini adalah kemampuan pemecahan masalah matematika peserta didik kelas VII-A SMP Negeri 1 Kebomas melalui model pembelajaran kooperatif Teams Assisted
Individualization (TAI) tergolong baik dengan rata-rata nilai kemampuan pemecahan masalah sebesar 70,66%. Dengan rincian 70,14% kemampuan peserta didik memahami indikator memahami masalah, 67,36% kemampuan peserta didik memahami indikator merencanakan pemecahan, 72,22% kemampuan peserta didik memahami indikator melaksanakan rencana pemecahan, 72,92% kemampuan peserta didik memahami indikator memeriksa kembali prosedur dan hasil penyelesaian.
Downloads
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.