Meningkatkan Hasil Belajar Matematika Siswa Kelas VII Melalui Metode Guided Discovery Learning
Abstract
Hasil belajar siswa SMP Negeri 13 Buton Tengah kelas VII tahun ajaran 2020/2021 dalam mata pelajaran Matematika menunjukkan hasil yang kurang memuaskan. Hal ini disebabkan pembelajaran Matematika sering dianggap pelajaran yang sulit dan rumit, serta membutuhkan kemampuan pra-syarat yang memadai untuk mempelajari kompetensi berikutnya. Kemampuan pra-materi yang dimiliki siswa rendah dan guru yang tidak memiliki banyak waktu untuk mengulang kemampuan pra-syarat siswa menjadi penyebab hasil belajar siswa yang masih buruk. Penelitian ini bertujuan meningkatkan hasil belajar siswa SMP Negeri 13 Buton Tengah dalam pelajaran Matematika materi Bentuk Aljabar melalui pembelajaran model Guided Discovery Learning. Metode penelitian yang digunakan adalah penelitian tindakan kelas (PTK) yang modelnya dikembangkan oleh Kemmis dan McTaggart. Jumlah subyek penelitian adalah 20 orang dengan karakteristik: 11 siswa adalah perempuan, dan 9 siswa adalah pria; 4 siswa mempunyai kemampuan akademis tinggi, 10 siswa mempunyai kemampuan akademis sedang, 6 siswa mempunyai kemampuan akademis rendah. Penelitian dilakukan dalam tiga siklus (Oktober – November 2020). Hasil penelitian menunjukkan siklus I rata-rata kelas sebesar 43,5 dan ketuntasan belajar yang mencapai KKM hanya 20%. Siklus II rata-rata kelas mengalami peningkatan sebesar 33,75 menjadi 77,25 dibandingkan pada siklus I sedangkan ketuntasan belajar yang mencapai KKM juga mengalami peningkatan sebesar 50% menjadi 70% dibandingkan pada siklus I. Siklus III rata-rata kelas juga mengalami peningkatan sebesar 2,65 menjadi 79,9 sedangkan ketuntasan belajar yang mencapai KKM juga meningkat 10% menjadi 80%. Karena dari siklus II rata-rata hasil belajar dan ketuntasan belajar telah dicapai siswa maka penelitian tindakan kelas dihentikan. Namun siklus III tetap dilaksanakan walaupun hanya sebagai penguatan karena dalam PPG ini telah dirancang untuk tiga siklus.
Downloads
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with DIDAKTIKA: Jurnal Pemikiran Pendidikan agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Licensing for Data Publication
Open Data and Software Publishing and Sharing
The journal strives to maximize the replicability of the research published in it. Authors are thus required to share all data, code or protocols underlying the research reported in their articles. Exceptions are permitted but have to be justified in a written public statement accompanying the article.
Datasets and software should be deposited and permanently archived inappropriate, trusted, general, or domain-specific repositories (please consult http://service.re3data.org and/or software repositories such as GitHub, GitLab, Bioinformatics.org, or equivalent). The associated persistent identifiers (e.g. DOI, or others) of the dataset(s) must be included in the data or software resources section of the article. Reference(s) to datasets and software should also be included in the reference list of the article with DOIs (where available). Where no domain-specific data repository exists, authors should deposit their datasets in a general repository such as ZENODO, Dryad, Dataverse, or others.
Small data may also be published as data files or packages supplementary to a research article, however, the authors should prefer in all cases a deposition in data repositories.