PENERAPAN BIOMETRIC FACE RECOGNITION MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK PADA APLIKASI BERBASIS ANDROID
DOI:
https://doi.org/10.30587/indexia.v6i1.4958Abstract
A security system with a high level of accuracy is needed to prevent data leakage, one way to prevent data leakage is to implement a face recognition biometric security system in a login system. In this study, the application of face recognition was carried out in the online workshop application login system (Mecha). The implementation is carried out using the Convolutional Neural Network method which is applied to android-based applications using tensorflow lite by adding assets with the .tflite extension to the Android Studio Integrated Development Environment (IDE) as well as the Google ML Kit library used as the pre-processing process. The results showed that the face recognition biometric security system can be applied to android-based applications and the Convolutional Neural Network method can be used to recognize faces even in dark conditions in online workshop applications (Mecha), the application of the Convolutional Neural Network method in online workshop applications (Mecha) provides average accuracy of 88.25%. With testing from genuine users of 99.25% and testing from non-genuine users of 77.25%.
References
[2] A. C. Kusuma dan A. D. Rahmani, “Analisis Yuridis Kebocoran Data Pada Sistem Perbankan Di Indonesia (Studi,” SUPREMASI: Jurnal Hukum 5.1, pp. 46-63, 2022.
[3] Munawir, L. Fitria dan M. Hermansyah, “Implementasi Face Recognition pada Absensi Kehadiran Mahasiswa Menggunakan Metode Haar Cascade Classifier,” InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, pp. 314-320, 2020.
[4] A. Kholik, “KLASIFIKASI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA TANGKAPAN LAYAR HALAMAN INSTAGRAM,” JDMSI, pp. 10-20, 2021.
[5] L. V. Fausett, Fundamentals of neural networks: architectures, algorithms and applications., India: Pearson Education, 2006.
[6] I. F. Alam, M. I. Sarita dan A. M. Sajidah, “IMPLEMENTASI DEEP LEARNING DENGAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK IDENTIFIKASI OBJEK SECARA REAL TIME BERBASIS ANDROID,” semanTIK, pp. 237-244, 2019.
[7] M. Hendriani, Rais dan L. Handayani, “Penerapan Artificial Neural Network Terhadap Identifikasi Wajah Menggunakan Metode Backpropagation,” Natural Science: Journal of Science and Technology, pp. 203-208, 2019.
[8] I. Mudzaki, R. Alfita dan M. Ulum, “RANCANG BANGUN SMART URINOIR UNTUK MENDETEKSI STATUS DEHIDRASI BERBASIS IMAGE PROCESSING DENGAN METODE JARINGAN SYARAF TIRUAN PERCEPTRON,” Journal of Electrical Engineering and Computer (JEECOM), pp. 1-7, 2020.
[9] A. Saleh, M. Harahap dan E. Indra, “Kombinasi Jaringan Learning Vector Quantization Dan Normalized Cross Correlation Pada Pengenalan Wajah,” Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), pp. 13-20, 2020.
[10] A. A. Saputra, “IMPLEMENTASI FACE RECOGNITION PADA SISTEM ABSENSI BERBASIS ANDROID MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) DAN LOCK GPS,” Doctoral dissertation, Universitas Mercu Buana, 2022.
[11] B. T. Utomo, I. Fitri dan E. Mardiani, “PENERAPAN FACE RECOGNITION PADA APLIKASI AKADEMIK ONLINE,” JURNAL INFORMATIK, 2020.
[12] S. Agustin, H. Tjandrasa dan R. H. Ginardi, “Deep Learning-based Method for Multi-Class Classification of Oil Palm Planted Area on Plant Ages Using Ikonos Panchromatic Imagery,” Advandced Science Engineering Information Technology, pp. 2200-2206, 2020.
[13] I. W. S. E. P, A. Y. Wijaya dan R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101,” JURNAL TEKNIK ITS, pp. 65-69, 2016.
[14] E. Maiyana, “PEMANFAATAN ANDROID DALAM PERANCANGAN APLIKASI KUMPULAN DOA,” Research of Science and Informatic, pp. 54-67, 2018.