p-ISSN: 1693-5128 Volume XV No.2, Maret 2015, p.37-46 doi: 10.30587/matrik.v15i2.xxx

PERENCANAAN PRODUKSI PUPUK GUANOKU UNTUK MEMENUHI PERMINTAAN KONSUMEN DI UD. PUPUK GUANOKU DENGAN PENDEKATAN SIMULASI

Safiut Taslim

UD. Pupuk Guanoku. safiut taslim@yahoo.com

ABSTRAK

Proses produksi pada suatu perusahaan dapat berlangsung dengan baik jika sistem dalam perusahaan tersebut dapat berjalan dengan baik dan tepat waktu. Ukuran kesuksesan dalam suatu sistem produksi dalam perusahaan dapat dinyatakan dalam bentuk besarnya produktivitas atau besarnya output dan input yang dihasilkan.

Metode Pendekatan simulasi untuk merencanakan proses produksi guna memenuhi permintaan konsumen di lakukan dengan perencanaan model simulasi dari sistem nyata. Kemudian dilakukan pemodelan simulasi dengan software Arena untuk menentukan model yang paling optimal pada proses produksi Pupuk Guanoku granule dan cair pada UD. Pupuk Guanoku.

Hasil simulasi proses produksi pada pembuatan model awal simulasi sistem produksi pupuk guanoku dari sistem nyata. Dengan output granule: 279 dan cair: 1312 dan dilakukan hipotesis kesamaan 2 rata-rata antara sistem nyata dengan model awal simulasi. Dengan nilai P-Value = 0.132 untuk granule dan P-Value = 0.809 untuk cair.

Kata kunci: Proses Produksi, Simulasi, Arena

PENDAHULUAN

Perkembangan perindustrian di Indonesia terus berkembang dalam bidang produksi. Produksi yang dihasilkan harus diimbangi dengan sumber daya yang mendukung, baik manusia maupun yang berasal dari alam. Perindustrian yang terus berkembang, harus dapat memenuhi kebutuhan konsumen yang terus meningkat.

UD Pupuk Guanoku merupakan perusahaan baru yang akan memproduksi pupuk granule dan cair. UD Pupuk Guanoku menjalin kerja sama dengan perencanaan UD Pupuk Mahesa dalam pembangunan perusahaan yang menghasilkan pupuk organik granule dan cair berbahan baku kelelawar. UD Pupuk kotoran Guanoku merupakan perusahaan yang bertujuan sebagai produksi pupuk organik yang ramah akan lingkungan. Untuk Memenuhi permintaan dari konsumen, produksi yang dihasilkan perusahaan harus dijadwal dengan baik agar tidak merugikan konsumen

Berikut ini adalah tabel data produksi dan data permintaan.

Tabel 1. Data hasil Produksi dan Permintaan Pupuk Guanoku.

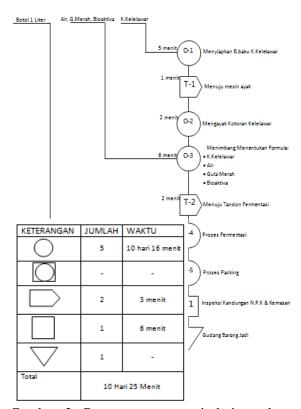
Bulan	Permin taan Granule (ton)	Pemin taan Granule terpenu hi (ton)	Permin aan Cair (liter)	Permin taan Cair terpenu hi (liter)
Jan	525	349	52000	32.774
Feb	525	348	52000	32.865
Mar	525	350	52000	32.684
Apr	525	353	52000	32.789
Mei	525	350	52000	32.557
Jun	525	355	52000	32.659

Berdasarkan tabel diatas diperoleh permintaan Pupuk Guano yang stabil pada angka 525 ton perbulan untuk pupuk Granule, dan 52.000 liter perbulan untuk Pupuk Cair. Pada tabel produksi diketahui bahwa masih terdapat permintaan yang belum bisa dipenuhi.

Simulasi bertujuan untuk membuat model proses produksi agar pemenuhan permintaan berjalan sesuai yang diharapkan oleh perusahaan. Pada proses simulasi dapat diketahui kapasitas produksi yang bisa memenuhi permintaan konsumen dengan simulasi.

Perumusan masalah dalam penelitian ini yaitu:
Bagaimana memodelkan simulasi sistem produksi
pupuk guanoku yang sesuai dengan sistem nyata?
a. Bagaimana membuat model sistem produksi
pupuk guanoku yang dapat memenuhi
permintaan

METODE


a. Peta Proses Operasi

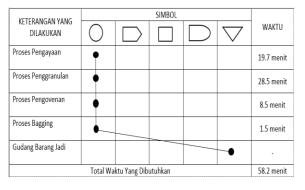
Peta proses operasi adalah peta kerja yang mencobaa menggambarkan urutan kerja dengan jalan membagi pekerjaan tersebut ke dalam elemen-elemen operasi detail. Disini tahapan proses operasi kerja harus diuraikan secara logis dan sistematis. Dengan demikian keseluruhan operasi kerja dapat diuraikan dari awal (raw material) sampai menjadi produk akhir (finished goods product). Berikut ini merupakan peta proses operasi dari pembuatan Pupuk Guanoku Granule gambar 1 dan Pupuk Guanoku Cair pada gambar 2.

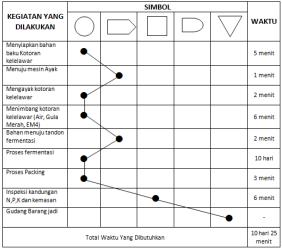
**************************************	o Kotoran Kelelawar
Sak 50 kg Air,Pewarna CaCo	1
	19.7 menit Pengayaan
	(0-1)
	in in its control in the control in
	28.5 menit Penggranulan
	(0-2) ~~
	k kelelawar,CaCo,Air,Pewarna
·····	8.5 menit Pengovenan
	0-3
	(U-3)
	1.5 menit Proses Bagging
	(0-5)
	``````````````````````````````````````
	Gudang Barang Jadi
	\ /
<del>}</del>	

KETERANGAN	JUMLAH	WAKTU
	4	58.2 menit
	-	-
	-	-
	1	-
Total	58.2	menit

Gambar 1. Peta proses operasi dari pembuatan Pupuk Guanoku Granule




Gambar 2. Peta proses operasi dari pembuatan Pupuk Guanoku Cair.


### b. Peta Aliran Proses

Peta aliran proses adalah suatu diagram yang menunjukkan urutan-urutan dari operasi, pemeriksaan, transportasi, dan penyimpanan yang terjadi selama suatu proses atau prosedure berlangsung, serta didalamnya memuat pula informasi-informasi yang diperlukan untuk analisa waktu yang dibutuhkan dan jarak perpindahan.

p-ISSN: 1693-5128 Volume XV No.2, Maret 2015, p.37-46 doi: 10.30587/matrik.v15i2.xxx

Diagram aliran merupakan suatu gambaran menurun skala dari susunan lantai ke gedung, yang menunjukkan lokasi dari semua aktivitas yang terjadi dalam peta aliran proses. Aktivitas bearty pergerakan suatu material atau orang dari suatu tempat ke tempat berikutnya, dinyatakan dengan garis, aliran dalam diagram tersebut. Arah aliran digambarkan oleh arah panah kecil pada garis aliran tersebut. Berikut ini merupakan peta aliran proses pembuatan Pupuk Guanoku Granule gambar 1 dan Pupuk Guanoku Cair pada gambar 2





Gambar 3 dan 4 Peta Aliran Proses Pupuk Granule

### b. Pengertian Simulasi

Simulasi merupakan suatu alat yang hanya digunakan jika ada suatu pemahaman alamiah dari yang akan dipecahkan. dirancang untuk membantu pemecahan suatu masalah yang berhubungan dengan sistem yang dioperasikan secara lamiah. Kegagalan dalam percobaan simulasi untuk menciptakan suatu hasil, lebih sering dikarenakan oleh kurangnya suatu pemahaman terhadap system dibandingkan dengan suatu pengetahuan bagaimana menggunakan software simulasi. Oleh karenanya penggunaan simulasi saat sekarang cukup banyak di dalam menyelesaikan berbagai persoalan. Di dalam bidang engineering dan management, simulasi digunakan untuk perancangan dan optimasi sistem, sebab pada system yang sangat kompleks keinginan dari pelangan (baik akuransi dan efisiensi) sangat tinggi. Di dalam bidang social secara umum simulasi digunakan untuk early warning system, eduction and training dan computer game. Sedangkan di dalam bidang sains, simulasi digunakan untuk menguji kebenaran dari suatu teori.

### c. Simulasi dengan Arena

Arena merupakan paket simulasi general purpose, yang memiliki kemampuan memodelkan sistem manufaktur dan non manufaktur. manufaktur: flow lines, assembly lines, job shop, conveyors. Sistem non manufaktur: Health care, maintenance sistem, computer nerwork, logistic, sistem. (Suryani, 2006)

Program ARENA adalah sebuah software simulasi yang diterbitkan oleh Rockwell Software Inc. Menurut Kelton, W. David, Sadowski, Randall P., Sadowski, Deborah A. (2009; 49). Software ARENA ini menyediakan alternatif model simulasi grafik dan model simulasi analisis yang dapat dikombinasikan untuk menciptakan model-model simulasi yang cukup luas dan bervariasi. Software ini memiliki kemampuan animasi dua dimensi. ARENA juga memiliki tingkat kompatibilitas yang baik. Kemampuan animasinya dapat ditunjang oleh file-file dari AutoCad. ARENA di spesialisasikan untuk menyelesaikan masalah-masalah Simulasi Sistem Diskrit. Kelebihan lain dari ARENA adalah memiliki kemampuan pengolahan data statistik, walaupun tidak begitu lengkap. Pada model simulasi menggunakan software Arena, terdapat beberapa komponen yang dijelaskan sebagai berikut:

### 1. Sistem

Sistem merupakan sekumpulan entitas yang bergerak atau berinteraksi untuk mencapai tujuan berdasarkan alur logika tertentu.

#### 2. Entitas

Entitas merupakan objek yang dikenai bergerak atau berinteraksi berdasarkan alur logika tertentu.

### 3. Atribut

Atribut merupakan karakteristik umum dari suatu entitas.

#### 4. Variabel

Variabel merupakan suatu komponen sistem yang mengandung informasi dan nilainya diperoleh dari eksekusi model simulasi.

### 5. Resources

Resources merupakan wadah untuk menampung entitas dalam jumlah tertentu. Entitas yang berasal dari suatu Resources dapat bergerak di dalam sistem jika resources tersebut bersifat seize-delay-relase (tampungberhenti sejenak keluarkan).

### 6. Queue (antrian)

Ketika entitas tidak dapat bergerak, dapat dimungkinkan sedang terdapat entitas lain yang sedang berproses dalam sistem, sehingga entitas yang tidak dapat bergerak tersebut dapat ditampung dalam suatu wadah sampai entitas lain yang menghambat selesai berproses. Wadah tersebut disebut queue (antrian).

## 7. Events (kejadian)

Kejadian dimana suatu perubahan terjadi yang mengakibatkan perubahan pada kondisi sistem.

### 8. Statistical accumulators

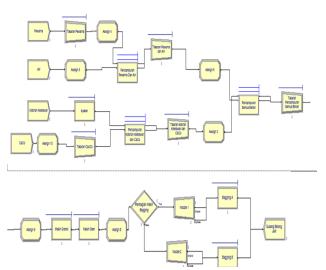
Komponen ini berfungsi untuk melihat kondisi sistem sesungguhnya berdasarkan variabel-variabel yang telah ditentukan sebelumnya. Pada penelitian ini komponen ini terdiri dari waktu tunggu, panjang antrian, utilitas fasilitas, dan waktu total entitas di dalam sistem.

## 9. Simulation clock (jam simulasi)

Waktu aktual pada sistem sesungguhnya dapat direpresentasikan ke dalam model simulasi lewat suatu variable yang disebut simulation clock.

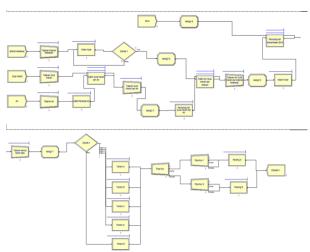
### 10. Starting dan stoping

Suatu kondisi yang ditentukan berdasarkan input tertentu dan berfungsi untuk membatasi simulasi yang berjalan.


### HASIL DAN PEMBAHASAN

### a. Tahap Perancangan Model Simulasi

Model simulasi dirancang sesuai dengan karakteristik dari sistem nyata. Durasi tiap proses dan *delay* antar proses juga mengikuti distribusi data yang diambil dari sistem nyata. Sedangkan kedatangan entitas disesuaikan dengan waktu kedatangan entitas pada sistem nyata. Tampilan model simulasi secara


keseluruhan dapat dilihat pada gambar dibwah

### 1. Model Simulasi Pupuk Granule



Gambar 5. Tampilan model simulasi secara keseluruhan

### 2. Model Simulasi Pupuk Cair



Gambar 6 Tampilan model simulasi secara keseluruhan

### b. Data Waktu Proses Produksi

Dalam tahap ini dilakukan pengumpulan data ke lapangan dengan mengamati sampel data pada waktu tertentu. Adapun data-data yang dikumpulkan penulis adalah data waktu proses produksi. Data ini dilakukan 1 hari pengamatan dan mencatat waktu proses produksi dalam satu hari, berapa kali proses produksi dan mencatat semua setiap waktu proses produksi. Dibawah ini

p-ISSN: 1693-5128 doi: 10.30587/matrik.v15i2.xxx

adalah data waktu proses produksi Granule berdasarkan pengamatan.

Tabel 2. Data Awal Kedatangan dan kuantitas kotoran kelelawar, CaCo, Pewarna, Air

Kotoran Kelelawar		CaCo		Pe	warna	Air	
Waktu	Kuantitas	Menit	Kuantitas	Menit	Kuantitas	Menit	Kuantita
antar	(Kg)		(Kg)		(Box)		(Liter)
kedatangan							
(Menit)							
21	1100	10	500	40	5	39	100
20	1100	9	500	41	5	40	100
19	1100	11	500	39	5	40	100
20	1100	12	500	40	5	39	100
19	1100	9	500	40	5	40	100
17	1100	10	500	39	5	39	100
19	1100	10	500	38	5	38	100
20	1100	9	500	40	5	40	100
21	1100	10	500	39	5	39	100
19	1100	9	500	41	5	41	100
17	1100	10	500	38	5	38	100
19	1100	11	500	40	5	40	100
20	1100	12	500	40	5	39	100
19	1100	11	500				
21	1100	11	500				
20	1100	10	500				
21	1100	12	500				
19	1100	10	500				
20	1100	11	500				
21	1100	10	500				
20	1100	9	500				
19	1100	10	500				
21	1100	10	500				
20	1100	12	500				
		10	500				
		9	500				
		11	500				
		10	500				
		9	500				
		10	500				
		10	500				
		8	500				
		10	500				
		9	500				
		10	500				
		11	500				
		10	500				

Tabel 3. Waktu Proses dan kuantitas Mesin Ayak, Mesin Granol, Bagging A, Bagging B.

Mesi	n Ayak	Mesir	Granol	Bagg	ging A	Bag	ging B
Menit	Kuantitas	Menit	Kuantitas	Menit	Kuantitas	Menit	Kuantitas
	(Kg)		(Kg)		(Kg)		(Kg)
21	1100	31	2000	60	2000	60	2000
20	1100	29	2000	55	2000	55	2000
19	1100	30	2000	60	2000	60	2000
20	1100	30	2000	65	2000	65	2000
19	1100	29	2000	55	2000	55	2000
17	1100	32	2000	60	2000	60	2000
19	1100	31	2000	65	2000	65	2000
20	1100	30	2000	60	2000	60	2000
21	1100	31	2000	55	2000	55	2000
19	1100	29	2000	50	2000	50	2000
17	1100	30	2000	60	2000	60	2000
19	1100	31	2000	55	2000	55	2000
20	1100	30	2000	65	2000	65	2000
19	1100	31	2000	55	2000	55	2000
21	1100	29	2000	60	2000	60	2000
20	1100	30	2000	65	2000	65	2000
21	1100						
19	1100						
20	1100						
21	1100						
20	1100						
19	1100						
21	1100						
20	1100						

Tabel 4. Data Awal Kedatangan dan kuantitas Kotoran Kelelawar, Gula Merah, Air, EM4.

	Kotoran Kelelawar		a Merah	Air			EM4
Waktu antar kedatangan (Menit)	Kuantitas (kg)	Menit	Kuantitas (kg)	Menit	Kuantitas (liter)	Menit	Kuantitas (liter)
34	110	120	200	120	1500	120	480
33	110	120	200	120	1500	120	480
32	110	120	200	120	1500	120	480
33	110	120	200	120	1500	120	480
32	110	120	200	120	1500	120	480
34	110	120	200	120	1500	120	480
33	110	120	200	120	1500	120	480
34	110	120	200	120	1500	120	480
34	110	120	200	120	1500	120	480
32	110	120	200	120	1500	120	480
30	110	120	200	120	1500	120	480
33	110	120	200	120	1500	120	480
33	110	120	200	120	1500	120	480
30	10	120	200	120	1500	120	480
33	110						
34	110						

Tabel 5. Waktu Proses dan kuantitas Mesin Ayak, Ketel Pemanas Air, Pencampuran Gula Merah dan Air, Mesin Mixer.

Mesin Ayak		Ketel I	Pemanas Air		Pencampuran Gula Merah dan		Mesin Mixer	
				Air				
Menit	Kuantitas	Menit	Kuantitas	Menit	Kuantitas	Menit	Kuantitas	
	(Kg)		(Liter/hari)		(liter)		(liter/hari)	
34	440	16	1500	5	1700	20	2.080	
33	440	17	1500	5	1700	20	2.080	
32	440	16	1500	5	1700	20	2.080	
33	440	18	1500	5	1700	20	2.080	
32	440	19	1500	5	1700	20	2.080	
34	440	16	1500	5	1700	20	2.080	
33	440	17	1500	5	1700	20	2.080	
34	440	18	1500	5	1700	20	2.080	
34	440	17	1500	5	1700	20	2.080	
32	440	16	1500	5	1700	20	2.080	
30	440	18	1500	5	1700	20	2.080	
33	440	15	1500	5	1700	20	2.080	
33	440	16	1500	5	1700	20	2.080	
30	440	17	1500	5	1700	20	2.080	
33	440							
34	440							

Tabel 6. Data Proses Bagging.

Bagg	ging A	Bagging B		
Detik	Kuantitas	Detik	Kuantitas	
	(liter)		(liter)	
15	1	21	1	
14	1	22	1	
15	1	21	1	
16	1	21	1	
16	1	21	1	
15	1	20	1	

Tabel 7. Jumlah Mesin Produksi

^	NO	Mesin dan Barang	Jumlah
	1	Mesin Ayak	2
	2	Ketel Pemanas	1
	3	Mesin Mixing	1
	4	Mesin granol	1
	5	Tandon 1100 L	5

### c. Pengolahan Data

Setelah dilakukan mengumpulan data, maka data perlu diolah lebih lanjut dengan menggunakan *input analyzer* pada software arena versi 14.0.

Untuk mengetahui jenis distribusi yang diperoleh dari pengamatan. Tujuan pengolahan data adalah sebagai input dalam model simulasi. Berikut ini langkah-langkah pengolahan yang dilakukan terhadap data-data tersebut.

Uii distribusi dimaksudkan data untuk mendeskripsikan pola variabel yang dimiliki oleh setia jenis data terjadinya proses. Karakteristik kedatangan dan pelayanan masing-masing memiliki jenis distribusi serta parameter nilai distribusi yang khas. Penentuan jenis distribusi pada sebuah data dilakukan dengan pendekatan statistik yaitu uji hipotesis kesamaan 2 rata-rata. Sofware yang dilakukan untuk melakukan uji distribusi data ini adalah paket analisa input arena (input analyzer) pada arena 14.0 yang mampu menghasilkan output fitting, serta tampilan kurva distribusi data.

Tabel 8. Hasil Input Analyzer Waktu Proses Granule

Data Sample	Distribuasi	Parameter
Waktu kedatangan kotoran kelelawar	Normal	NORM(19.7, 1.11)
Waktu Kedataangan CaCo	Triangular	TRIA(7.5, 10.3, 11.5)
Waktu Kedataangan Pewarna	Triangular	TRIA(37.5, 40, 41.5)
Waktu Kedataangan Air	Normal	NORM(39.4, 0.862)
Waktu proses Ayak	Normal	NORM(19.7, 1.11)
Waktu proses mesin granol	Beta	28.5 + 4 * BETA(1.82, 2.49)
Waktu proses mesin oven	Beta	8.5 + 4 * BETA(1.7, 2.18)
Waktu proses Bagging A	Normal	NORM(90, 0.692)
Waktu proses Bagging B	Normal	NORM(90, 0.692)

Tabel 9. Hasil Input Analyzer Waktu Proses Cair

Data Sample	Distribusi	Parameter Distribusi
Waktu kedatangan kotoran kelelawar	Beta	29.5 + 5 * BETA(1.57, 0.844
Waktu Kedataangan Gula Merah	Constant	Constant (120)
Waktu Kedatangan Air	Constant	Constant (120)
Waktu Kedatangan EM4	Constant	Constant (120)
Waktu proses Ayak	Beta	29.5 + 5 * BETA(1.57, 0.844)
Waktu proses Pemanas Air	Beta	19.5 + 6 * BETA(1.68, 0.84)
Waktu proses Pencampuran Gula Merah dan Air	Triangular	TRIA(3.5, 5, 5.5)
Waktu proses Mixer	Triangular	TRIA(14.5, 20, 22.5)
Waktu proses Bagging A	Normal	NORM(15, 0.685)
Waktu proses Bagging B	Normal	NORM(21, 0.648)

p-ISSN: 1693-5128 doi: 10.30587/matrik.v15i2.xxx

Tabel 10. Output data real dan hasil simulasi.

<b>******</b>	Hasil Produk	si Grano	l/hari
Real		Simul	asi
No	Output produksi / Sak	No	Output produksi / Sak
1	279	1	280
2	278	2	279
3	279	3	282
4	280	4	278
5	280	5	280
6	279	6	279
7	276	7	279
8	279	8	281
9	279	9	278
10	274	10	279
11	280	11	278
12	276	12	278
13	278	13	278
14	275	14	279
15	278	15	279
16	280	16	280
17	281	17	279
18	282	18	281
19	281	19	280
20	279	20	280
21	280	21	280
22	276	22	279
23	277	23	278
24	280	24	281
25	279	25	279
	: 278.68		: 279.40 or Dominai - 1.15

Identifier	Average	Half-widt	Minimum	Maximum #	Replications
Entity 1.NumberIn	24.880	.13691	24.000	25.000	25
Entity 1.NumberOut	7.1600	.15446	7.0000	8.0000	25
Entity 2.NumberIn	98.000	.59583	95.000	100.00	25
Entity 2.NumberOut	28.640	.61782	28.000	32.000	25
Entity 3.NumberIn	77.760	.49536	72.000	78.000	25
Entity 3.NumberOut	42.960	.92673	42.000	48.000	25
Entity 4.NumberIn	502.24	5.3296	468.00	507.00	25
Entity 4.NumberOut	293.48	.75480	291.00	298.00	25
Pegawai Mesin Granool.NumberSeized	12.960	.08256	12.000	13.000	25
Pegawai Mesin Granool.ScheduledUtilization	.76231	.00304	.75133	.77683	25
Pegawai Mesin Bagging.NumberSeized	280.16	.48668	278.00	283.00	25
Pegawai Mesin Bagging.ScheduledUtilization	.87429	.00148	.86839	.88354	25
Pegawai Mesin Oven.NumberSeized	12.000	.00000	12.000	12.000	25
Pegawai Mesin Oven.ScheduledUtilization	.25599	.00266	.24536	.26649	25
Pegawai Mesin Ayak.NumberSeized	24.600	.20640	24.000	25.000	25
Pegawai Mesin Ayak.ScheduledUtilization	.98899	.00357	.97012	1.0000	25
System.NumberOut	279.16	.48668	277.00	282.00	25

Gambar 7. Hasil Output Summary for 25 Replications

Output hasil statistikal dengan minitab 16.0 Two-sample T for uwo uwo vs simulasi

N Mean StDev SE Mean Real Granol 25 278.68 2.04 0.41 simulasi 25 279.40 1.15 0.23

Difference = mu (uwo uwo) - mu (simulasi) Estimate for difference: -0.720 95% CI for difference: (-1.668, 0.228) T-Test of difference = 0 (vs not =): T-Value = -1.54 P-Value = 0.132 DF = 37

### Kesimpulan:

Dengan mengambil ∝ (level of significant = taraf nyata) = 0.05 maka tampak bahwa nilai P-Value =  $0.132 > \alpha = 0.05$  jadi dapat disimpulkan bahwa H₀ diterima rata-rata hasil produksi dalam sistem real sama dengan rata-rata dalam sistem simulasi dengan Mean: 279.40 dan dinyatakan Valid karena tidak ada perbedaan secara signifikan.

Tabel 11. Output data real dan hasil simulasi.

	Hasil Prod	uksi Cair	hari		
Real		Simul	lasi		
No	Output produksi / liter	No	Output produksi / liter		
1	1311	1	1312		
2	1316	2	1317		
3	1315	3	1315		
4	1328	4	1329		
5	1327	5	1328		
6	1293	6	1295		
7	1305	7	1306		
8	1340	8	1340		
9	1313	9	1314		
10	1315	10	1316		
11	1310	11	1312		
12	1292	12	1294		
13	1295	13	1297		
14	1318	14	1319		
15	1324	15	1325		
16	1339	16	1340		
17	1302	17	1303		
18	1304	18	1305		
19	1292	19	1293		
20	1323	20	1323		
21	1321	21	1321		
22	1280	22	1281		
23	1292	23	1293		
24	1301	24	1303		
25	1318	25	1319		
	Mean: 1311.0		Mean: 1312.0		
Stand	ar Deviasi : 15.3	Stand	ar Deviasi : 15.0		

Identifier	Average	Half-width	Minimum	Maximum #	Replication
Entity 1.NumberIn	2099.0	.16512	2099.0	2101.0	25
Entity 1.NumberOut	1318.0	6.1942	1287.0	1346.0	25
Entity 2.NumberIn	10.000	.00000	10.000	10.000	25
Entity 2.NumberOut	2.0000	.00000	2.0000	2.0000	25
Entity 3.NumberIn	7.0000	.00000	7.0000	7.0000	25
Entity 3.NumberOut	5.0000	.00000	5.0000	5.0000	25
Entity 4.NumberIn	5.0000	.00000	5.0000	5.0000	25
Entity 4.NumberOut	1.0000	.00000	1.0000	1.0000	25
Pecampuran Gula Merah dan Air.NumberSeized		.00000	1.0000	1.0000	25
Pecampuran Gula Merah dan Air.ScheduledUti		2.9234E-19		.01042	25
Pegawai Mesin Ayak 1.NumberSeized	3.4800	.29480	3.0000	5.0000	25
Pegawai Mesin Ayak 1.ScheduledUtilization	.30601	.02638	.25600	.44595	25
Pegawai Mesin Ayak 2.NumberSeized	3.4800	.29480	3.0000	5.0000	25
Pegawai Mesin Ayak 2.ScheduledUtilization		.02638	.25600	.44595	25
Pegawai Tandon A.NumberSeized	.16000	.15446	.00000	1.0000	25
Pegawai Tandon A.ScheduledUtilization		3.2178E-04		.00208	25
Pegawai Tandon B.NumberSeized	.16000	.15446	.00000	1.0000	25
Pegawai Tandon B.ScheduledUtilization		3.2178E-04		.00208	25
Pegawai Tandon C.NumberSeized	.32000	.19653	.00000	1.0000	25
Pegawai Tandon C.ScheduledUtilization		4.0944E-04		.00208	25
Pegawai Tandon D.NumberSeized	.28000	.18917	.00000	1.0000	25
Pegawai Tandon D.ScheduledUtilization		3.9410E-04		.00208	25
Pegawai Tandon E.NumberSeized	.08000	.11430	.00000	1.0000	25
Pegawai Tandon E.ScheduledUtilization		2.3812E-04		.00208	25
Pegawai Mesin Mixer 1.NumberSeized	1.0000	.00000	1.0000	1.0000	25
Pegawai Mesin Mixer 1.ScheduledUtilization		.00132	.03276	.04410	25
Pegawai Mesin Mixer 2.NumberSeized	1.0000	.00000	1.0000	1.0000	25
egawai Mesin Mixer 2.ScheduledUtilization		.00132	.03276	.04410	25
egawai Ketel Pemanas Air.NumberSeized	1.0000	.00000	1.0000	1.0000	25
Pegawai Ketel Pemanas Air.ScheduledUtiliza		.00135	.04280	.05306	25
egawai packing A1.NumberSeized	766.24	3.5893	748.00	782.00	25
Pegawai packing A1.ScheduledUtilization	.39892	.00189	.39037	.40806	25
egawai packing A2.NumberSeized	766.24	3.5893	748.00	782.00	25
pegawai packing A2.ScheduledUtilization	.39892	.00189	.39037	.40806	25
Pegawai packing B1.NumberSeized	547.76	2.6385	535.00		25
Pegawai packing B1.ScheduledUtilization	.39892	.00189	.39037	.40806	25
Pegawai packing B2.NumberSeized	547.76	2.6385	535.00		25
Pegawai packing B2.ScheduledUtilization	.39892	.00189	.39037	.40806	25
System.NumberOut	1312.0	6.1942	1281.0	1340.0	25

Gambar 8. Hasil Output Summary for 25 Replications

Output hasil statistikal dengan minitab 16.0 Two-sample T for real cair vs Simulasi

N Mean StDev SE Mean real cair 25 1311.0 15.3 3.1 Simulasi 25 1312.0 15.0 3.0

Difference = mu (real cair) - mu (Simulasi) Estimate for difference: -1.04 95% CI for difference: (-9.67, 7.59) T-Test of difference = 0 (vs not =): T-Value = -0.24 P-Value = 0.809 DF = 47

### Kesimpulan:

Dengan mengambil  $\propto$  (level of siqnificant = taraf nyata) = 0.05 maka tampak bahwa nilai P-Value = 0.809>  $\propto$  = 0.05 jadi dapat disimpulkan bahwa H₀ diterima rata-rata hasil produksi dalam sistem riil sama dengan rata-rata dalam sistem simulasi dengan Mean : 1312 dan dinyatakan Valid karena tidak ada perbedaan secara signifikan.

### **KESIMPULAN**

Berdasarkan hasil penelitian di UD. Pupuk Guanoku maka diperoleh kesimpulan sebagai berikut:

 Telah dilakukan pembuatan model awal simulasi sistem produksi pupuk guanoku dari sistem nyata. Dengan output granule: 279 dan cair: 1312 yang sesuai dengan data output real.

- 2. Dilakukan uji hipotesis kesamaan 2 rata-rata antara sistem nyata granol dengan model awal simulasi granule. Didapati bahwa Dengan mengambil ∝ (level of siqnificant = taraf nyata) = 0.05 maka tampak bahwa nilai P-Value = 0.132 > ∝ = 0.05 jadi dapat disimpulkan bahwa H₀ diterima rata-rata hasil produksi dalam sistem real sama dengan rata-rata dalam sistem simulasi dengan Mean : 279.40 dan dinyatakan Valid karena tidak ada perbedaan secara signifikan.
- 3. Dilakukan uji hipotesis kesamaan 2 rata-rata antara sistem nyata cair dengan model awal simulasi cair. Dengan mengambil  $\propto$  (level of siqnificant = taraf nyata) = 0.05 maka tampak bahwa nilai P-Value = 0.809>  $\propto$  = 0.05 jadi dapat disimpulkan bahwa H₀ diterima rata-rata hasil produksi dalam sistem riil sama dengan rata-rata dalam sistem simulasi dengan Mean : 1312 dan dinyatakan Valid karena tidak ada perbedaan secara signifikan.
- 4. Tidak menambah pegawai dalam proses Bagging.
- 5. Hasil simulasi hanya memodelkan dan menganalisa proses produksi pembuatan pupuk granule dan cair.

### **DAFTAR PUSTAKA**

Abeya, Temesgen Garoma. Nahom Mulugeta., 2014, "Modeling and Performance Analysis of Manufacturing System in Fotwear Industry", Journal Science, Technology and Art Research Vol. 3 No. 3 ISSN 2226-7522.

Arifin, Miftahol., 2009, "Simulasi Sistem Industri", Edisi Pertama. Yogyakarta: Graha Ilmu.

Anatan, Lina. Ellitan. Lena., 2008, "Supply Chain Management Teori dan Aplikasi", Edisi Pertama, Bandung: Penerbit Alfabeta.

Devi, Feny Okenia. Nugraha Cahyadi. Rispianda., 2014, "Pemodelan dan Simulasi Berbasis Agen untuk Analisis Pengaruh Penerapan Otomasi Industri terhadap Lpangan Kerja", Jurnal Teknik Industri Itenas Vil.01 No.03 ISSN: 2338-5081.

Hermanto, Yoko Teddy., 2014, "Perancangan Perbaikan Metode Kerja Dengan MOST dan Simulasi Pada Proses Produksi Di UD. Songkok Muslim" Skripsi Universitas Muhammadiyah Gresik.

doi: 10.30587/matrik.v15i2.xxx

p-ISSN: 1693-5128

- Kamaliya, Lailaatul Nuzullis. Sugiono. Widya, Wijayanti., 2015, "Peningkatan Performance System pada Departemen Packaging Dengan Simulasi Proses dan Redesign Workstation". Jurnal Fakultas Teknik Mesin Vol. 3 No.1 ISSN 2338-3025
- Ristono, Agus., 2011, "Pemodelan Sistem". Edisi Pertama – Yogyakarta; Graha Ilmu, ISBN: 978-979-756-709-5.
- Sugiarto, Fenki. Joko, Lianto Buliali., 2012., "Implementasi Simulasi Sistem untuk OPtimasi Proses Produksi pada Perusahaan Pengalengan Ikan", Jurnal Teknik ITS Vol 1, ISSN: 2301-9271.

- Suharjo, Bambang., 2013, "Praktikum Statistik Dengan Minitab 16.0." Program Studi Teknik Industri UMG.
- Suryani, Erna., 2006, "*Pemodelan dan Simulasi*". Edisi Pertama, Yogyakarta: Graha Ilmu.
- Tahar, Razman Bin Mat. Ali Asghar., 2010, "Design and Amalysis of Automobiles Manufacturing System Based on Simulation Model", Journal of Technology Management Vol.4 No.7.
- Widodo, Kuncoro Harto. Erdi, Ferdiansyah., 2010, "Optimasi Kinerja Rantai Pasok Industri Tekstil dan Produk Tekstil Indonesia Berdasarkan Simulasi Sistem Dinamis", Jurnal Teknologi Industri Pertanian Vol.30 No.01.

Halama ini sengaja dikosongkan