Implementasi Model Artificial Intelligence dalam Warehouse: Systematic Literature Review

Authors

  • Armando Tirta Dwilaga Universitas Gunadarma

DOI:

https://doi.org/10.30587/justicb.v3i2.5250

Keywords:

Artificial Intelligence, warehouse, PRISMA

Abstract

Tujuan dari penulisan ini adalah untuk mengkaji gambaran dan mendeskripsikan berbagai variabel penerapan model kecerdasan buatan di gudang dengan melakukan kajian literatur. Basis data indeks ScienceDirect hanya digunakan untuk tahun 2018, 2019, 2020, 2021, dan 2022, dan salah satu dasar pemilihannya adalah pemahaman mendasar tentang teknologi kecerdasan buatan. Hasil dari 318 artikel dikumpulkan menjadi 40 artikel yang memiliki keterkaitan erat hingga terpilih 14 artikel, berdasarkan kerangka metode PRISMA ( Preferred Reporting Items for Systematic Review and Meta-analyses) yang telah dimodifikasi untuk menghitung kriteria inklusi dan eksklusi. Hasil artikel-artikel tersebut lebih spesifik diidentifikasi dengan menggunakan deskripsi deskriptif daftar jurnal dari IFAC-PapersOnLine yang dijadikan referensi paling dominan, penerbit masing-masing jurnal didominasi Elsevier, negara pembuat jurnal didominasi China, model pengukuran penelitian yang paling umum menggunakan data dari sistem algoritma seperti pengelolaan fuzzy, k-means, dan metode yang digunakan didominasi kuantitatif. Fokus ringkasan literatur ini sebagian besar pada model kecerdasan buatan yang digunakan di gudang .

References

AlAlawin, A. H., AlAlaween, W. H., Salem, M. A., Mahfouf, M., Albashabsheh, N. T., & He, C. (2022). A fuzzy logicbased assessment algorithm for developing a warehouse assessment scheme. Computers & Industrial Engineering, 168, 108088. https://doi.org/10.1016/J.CIE.2022.108088
Ferrari, A., Zenezini, G., Rafele, C., & Carlin, A. (2022). A Roadmap towards an Automated Warehouse Digital Twin: current implementations and future developments. IFAC-PapersOnLine, 55(10), 1899–1905. https://doi.org/10.1016/j.ifacol.2022.09.676
Lian, Y., Xie, W., & Zhang, L. (2020). A probabilistic time-constrained based heuristic path planning algorithm in warehouse multi-AGV systems. IFAC-PapersOnLine, 53(2), 2538–2543. https://doi.org/10.1016/j.ifacol.2020.12.293
Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018.11.008
Manna, A. K., Akhtar, M., Shaikh, A. A., & Bhunia, A. K. (2021). Optimization of a deteriorated two-warehouse inventory problem with all-unit discount and shortages via tournament differential evolution. Applied Soft Computing, 107. https://doi.org/10.1016/j.asoc.2021.107388
Opalic, S. M., Goodwin, M., Jiao, L., Nielsen, H. K., Pardiñas, Á. Á., Hafner, A., & Kolhe, M. L. (2020). ANN modelling of CO2 refrigerant cooling system COP in a smart warehouse. Journal of Cleaner Production, 260. https://doi.org/10.1016/j.jclepro.2020.120887
Pawar, N. S., Rao, S. S., & Adil, G. K. (2022). A New Measure for Scattering of Stocks in E-commerce Warehouses. IFAC-PapersOnLine, 55(10), 1357–1362. https://doi.org/10.1016/j.ifacol.2022.09.579
Raza, B., Aslam, A., Sher, A., Malik, A. K., & Faheem, M. (2020). Autonomic performance prediction framework for data warehouse queries using lazy learning approach. Applied Soft Computing Journal, 91.https://doi.org/10.1016/j.asoc.2020.106216
Reda, M., Onsy, A., Elhosseini, M. A., Haikal, A. Y., & Badawy, M. (2022). A discrete variant of cuckoo search algorithm to solve the Travelling Salesman Problem and path planning for autonomous trolley inside warehouse. Knowledge-Based Systems, 252, 109290. https://doi.org/10.1016/J.KNOSYS.2022.109290
Tan, Z., Li, H., & He, X. (2021). Optimizing parcel sorting process of vertical sorting system in e-commerce warehouse. Advanced Engineering Informatics, 48. https://doi.org/10.1016/j.aei.2021.101279
Tokat, S., Karagul, K., Sahin, Y., & Aydemir, E. (2022). Fuzzy c-means clustering-based key performance indicator design for warehouse loading operations. Journal of King Saud University - Computer and Information Sciences, 34(8), 6377–6384. https://doi.org/10.1016/j.jksuci.2021.08.003
van Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for developing smart warehouses in industry 4.0. Computers in Industry, 124. https://doi.org/10.1016/j.compind.2020.103343
Zhang, D., Pee, L. G., & Cui, L. (2021). Artificial intelligence in E-commerce fulfillment: A case study of resource orchestration at Alibaba’s Smart Warehouse. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2020.102304
Živičnjak, M., Rogić, K., & Bajor, I. (2022). Case-study analysis of warehouse process optimization. Transportation Research Procedia, 64, 215–223. https://doi.org/10.1016/j.trpro.2022.09.026

Downloads

Published

2023-01-31

How to Cite

Dwilaga, A. T. (2023). Implementasi Model Artificial Intelligence dalam Warehouse: Systematic Literature Review. JUSTI (Jurnal Sistem Dan Teknik Industri), 3(2), 253–261. https://doi.org/10.30587/justicb.v3i2.5250

Issue

Section

Articles